
Balmeo et al.: Comparative analysis of electric vehicle charging stations 

 
The Palawan Scientist, 15(2): 31-40 

© 2023, Western Philippines University  

41 

 

 

 

 

 

 

 

 

 

How to cite: 

Balmeo Jr. AA, Aguirre Jr. RA, Castillo MDG, Maguindayao EJH and Manzano JPP. 2023. Comparative analysis of 

unidirectional and bidirectional electric vehicle charging stations (EVCS) optimal configuration in an IEEE 37-bus 

feeder system using Genetic Algorithm. The Palawan Scientist, 15(2): 41-54. 

https://doi.org/10.69721/TPS.J.2023.15.2.05 

 

 

 
 

ABSTRACT 
 

Various power system problems and challenges may arise in the future due to the large scale of 

deployment of electric vehicles (EVs). Hence, the proper placement of EV charging stations (EVCS) 

effectively mitigates the impact of high EV loads connected to the grid. The research intends to explore 

and analyze differences between the regulation effectiveness of unidirectional and bidirectional charging 

technologies by utilizing different comparison evaluation indices. Moreover, considering their 

penetration level, this study tackles the impact analysis of EV and EVCS integration through time. 

Specifically, this paper aims to identify the optimal EVCS sites in an IEEE 37-bus test feeder system to 

minimize power loss brought by EV integration. Through MATLAB R2022b simulation and OpenDSS 

power flow analysis, the EVCS are optimally located near the supply bus. The findings show a direct 

relationship between the EV penetration level and system power loss. Due to the EV technology growth, 

there is an observed voltage profile degradation of up to 1.7094 p.u. The paper also highlights that 

although EV bidirectional charging technology (BCT) might reduce the load on the grid in the next few 

years of low penetration compared to unidirectional charging technology (UCT), it will give no 

significant difference due to the rapid increase of load connected during its high EV penetration. 

 

Keywords: electric vehicles, MATLAB, optimization, power loss reduction, voltage profile 

improvement 
 

 

 

INTRODUCTION 

 

Today’s global challenges include reducing 

carbon footprints and mitigating energy risks. True 

enough, these will eventually become huge problems 

if not prevented. Thus, modernizing the transportation 

mode to electric vehicles (EV) is eyed to cut down the 

usage of internal combustion engines (ICEs)—the 

primary contributor to problems in energy security, air 

pollution, and global warming (Jacobson 2017). 

Sofana Reka et al. (2022) proved in their study that 

EVs have an enormous impact on the environmental 

aspects of ICEs, in particular with the emissions of 

CO2 gas and maintenance costs. Meanwhile, EVs 

make a way towards sustainability by reducing 

greenhouse gas (GHG) emissions and fossil fuel 

consumption (Bayani et al. 2022). 
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However, other works disagree on the drive 

range aspect of EVs since they are unsuitable for long-

distance travel and ownership cost is currently less 

cost-competitive (Sofana Reka et al. 2022; Bayani et 

al. 2022; Danielis et al. 2018). At present, three main 

charging methods have been conceptualized and 

developed: battery exchange, conductive charging, 

and wireless charging (Arif et al. 2021). EV users find 

the battery swap station (BSS) technique a convenient 

option since they will only pay a monthly rental fee for 

quick battery swapping for their convenience. 

However, this technique requires users to have high 

payments for the BSS owner to utilize high-end 

batteries with a long life span and can be recharged 

multiple times (Gschwendtner et al. 2021; Brenna et al. 

2021). Meanwhile, the wireless power transfer (WPT) 

differs among the three, for it can recharge the battery 

conveniently and safely. Even so, due to the weak 

inductive power and a large amount of eddy current 

loss, it is not advisable in the long run (Sanguesa et al. 

2021). The most widely accepted charging method is 

the conductive charging (CC), which has a high 

charging efficiency through direct connection. 

Moreover, a vehicle-to-grid (V2G) facility can be a 

way to incentivize compensation, lessen losses, and 

prevent power grid overload (Arif et al. 2021). 

Aside from the charging methods, charging 

modes are continuously being improved to attain 

charging speeds comparable to gas refueling for ICEs. 

Currently and generally, there are three different EV 

charging levels, as defined by Narasipuram and 

Mopidevi (2021). In the level I charging, there is an 

AC to DC converter integrated inside the car and 

charges within the current range of 15–20 A at 120 V. 

Research found that the ratio of driving-mile distance 

per charging hour is 2:1. There have been many 

innovations over time. Level II charging station has 

charging characteristics of 80 A at 240 V, which can 

have a 9–52-mile travel distance after an hour of 

charging. Meanwhile, the level III charging provides 

DC power and is already attached to the station. It 

gives 300 A current flow at 480 V, which can have 170 

miles of travel in just thirty minutes of charging. 

However, type III is only compatible with a few EV 

models, leaving the rest to choose between types I and 

II charging. For the purpose of this research, the paper 

utilizes the level II type of charging. The charging 

level of this type is the most preferable among all the 

abovementioned charging types since it enables 

sufficiently long-distance trips and charges an EV at a 

reasonable length of time (Lee et al. 2020).  

Conversely, the switch to vehicle 

modernization through EVs also creates another issue 

requiring plenty of accessible EV charging stations 

(EVCS) to recharge their batteries, as ICE vehicles 

need gas stations for refueling purposes. Thus, EV 

owners expect to have available EVCS to charge their 

vehicles quickly and hassle-free, maximizing the 

growth of this particular technology. However, this 

innovation might challenge government policies on 

how to steer the market toward full electrification in 

transportation despite its growing disadvantages 

(Sofana Reka et al. 2022). 

Even though it gives users convenience, 

large-scale EVCS deployment negatively impacts the 

power grid, such as transformer overloading and 

power quality degradation (Zhou et al. 2017). This 

impact is especially true given that the distribution 

systems are reaching their maximum capacities. This 

anticipated load growth, which is dynamic and highly 

intermittent, would be a challenging job for the electric 

power sector (Gupta et al. 2020). Implementing 

countermeasures, such as appropriate siting of EVCS 

and developing coordinated unidirectional and 

bidirectional charging types, plays a crucial role in 

effectively reducing the load impacts in the 

distribution network (Zheng et al. 2019).  

Identifying suitable EVCS location in the 

distribution system is fundamental for maintaining the 

balance between load and generation, reducing power 

losses, and improving system stability (Rajendran and 

Kumar 2022). If not arranged properly, this will 

significantly affect the grid, including voltage 

fluctuations, flickering, sag, swell, imbalances, 

harmonics, and notches (Narasipuram and Mopidevi 

2021). Researchers have been working on this issue, 

exploring the optimal location of the EVCS by delving 

into different perspectives and patterns necessary to 

real-life situations. Incorporating influencing 

parameters such as system buses and parking 

availability plays a significant role in solving the 

optimal EVCS problem (Zeb et al. 2020). Previous 

studies have analyzed different power systems such as 

in the work of Yenchachalit et al. (2018), which 

utilized the IEEE 30-bus test system to determine the 

trend in power loss with and without an EVCS 

installed. Moreover, Clairan et al. (2022), an actual 

distribution system in Quinto, Ecuador, to determine 

the effect of increasing electric taxi penetration; while 

Janamala (2022) investigated the optimal siting of 

EVCS considering EV load growth in IEEE 33-, 69-, 

and 85-bus systems. 

Various emerging optimization methods are 

consistently used to compare power distribution and 

transmission system performances. For example, the 

hybrid technique consisting of moth-flame 

optimization (MFO) algorithm and particle swarm 

optimization (PSO) has been done in the paper of 

Shaikh et al. (2023) to examine the advantages of 

using different numbers of bundled conductors. On the 

other hand, the improved MFO has been applied to AC 

transmission line estimations considering different test 

case parameters (Shaikh et al. 2022). In calculating the 

transmission line parameters with load modeling 

uncertainty, Shaikh et al. (2021) used the whale 

optimization algorithm (WAO).  

 To determine the optimal EVCS location in 

the power network, a balanced mayfly algorithm was 
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utilized to identify the best proposal for optimal 

allocation and sizing on a distribution system in India 

(Chen et al. 2021). Another literature used the Harris 

hawk optimization with differential evolution to solve 

the optimization problem in the EVCS allocation in a 

radial distribution network (Pal et al. 2021). The 

placement of EVCS in distribution systems, shunt 

capacitors, and distributed generators in the work of 

Gampa et al. (2020) used a grasshopper optimization 

algorithm to improve different electrical power system 

parameters. Lazari and Chassiakos (2023) used a 

genetic algorithm (GA) to minimize the overall cost of 

deploying the charging networks. Meanwhile, a 

modified GA in another study developed a 

mathematical program with equilibrium constraints 

(MPEC) in EVCS location and its discrete transport 

network designs (Qiao et al. 2023).  

Determining possible locations not only by 

EVCS but also with distributed PV stations through 

GA was used based on chance-constrained 

programming (Zhang et al. 2021). Also, GA was 

utilized for efficient EVCS placements, taking 

Tunisia’s urban area in North Africa as the research 

locale (Mehouachi et al. 2022). Nonetheless, the 

above-cited works of literature did not use any 

statistical test but instead focused on the objective 

function used in their respective research. 

Most of these studies have only considered 

the unidirectional charging type, where EVs can only 

draw power from the grid. Bidirectional charging, as 

the improved type, which enables energy stored in EV 

batteries to discharge back to the grid, has received 

little attention. With the expectation that more EVs 

capable of bidirectional charging in the future, 

investigating its effect on the present distribution 

system is crucial in anticipating its benefits and 

adverse impacts (Isa et al. 2015).  

Against this backdrop, this paper is primarily 

focused on the following aspects: (1) the investigation 

of the effects of new charging technologies on the 

power losses and voltage profiles with increasing 

penetration levels and its compatibility with the grid 

through EVCS modeling; (2) the optimal siting of 

EVCS to avoid negative impacts on the grid, 

particularly in the minimization of the additional 

system losses in the IEEE 37-bus test system; and (3) 

the comparison of the effectiveness of unidirectional 

and bidirectional charging types using four evaluation 

indices: voltage profile improvement index (VPII); 

real power loss reduction index (PLRI); reactive 

power loss reduction index (QLRI); and apparent 

power loss reduction index (SLRI). Cover cost-

effectiveness in locating the EVCS in the test system 

is not covered in this paper. 

The main contributions of this paper are as 

follows: (1) the increasing penetration levels will give 

theoretical trend for the simulation of EVCS optimal 

configuration between the two charging technologies 

to differentiate them in terms of power losses and total 

voltage deviation; (2) for the energy department of the 

country to pinpoint through genetic algorithm where 

in the bus system should the EVCS be located to obtain 

the minimized power losses in the grid; (3) for the 

policymakers to gain insight on the difference between 

the two charging technologies in terms of the charging 

behavior, and to decide on the EV charging policies 

that can help in grid load management. 

The rest of the research paper is structured as 

follows: Section 2, the methods, explains the profile of 

the feeder, the selection method, EV specifications and 

modeling, the optimal model and algorithm 

implementation, the model construction, and indices 

for evaluation; Section 3, the results, includes 

reflecting the effect of the total integration of the new 

technology in increasing penetration levels, the EVCS 

optimal distribution configuration through genetic 

algorithm optimization, and charging technology 

comparison; and Section 4, the discussion, tackles the 

implications of the total integration of the advancing 

technology, the causes of the EVCS optimal 

arrangement, and the prospects, conclusions, and 

implications of charging implementation of 

unidirectional and bidirectional charging technologies. 

 

 

METHODS 

 

Institute of Electrical and Electronics Engineers 

(IEEE) 37-bus Test Feeder Profile and Optimal 

Location Selection 

This research considered the medium voltage 

IEEE 37-bus test system. It has highly unbalanced load 

characteristics, differentiating it from other feeder 

systems. Shown in Figure 1 is the single-line diagram 

of the renumbered IEEE 37-bus feeder system adopted 

from the work of Miras et al. (2019). 

 

 
 

Figure 1. Single line diagram of the renumbered Institute of 

Electrical and Electronics Engineers (IEEE) 37-bus test 

system (Miras et al. 2019). 
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 Different approaches can be used to select the 

optimal locations in a test bus system. In studying bus 

feeders, the researchers can include a constraint in 

geographical location employing divisions into 

different clusters or zones. Considering the whole 

network is the best option for this paper to achieve the 

optimal EVCS configuration. Thus, it will exclude the 

geographical location aspect as a constraint. Moreover, 

this assessment focuses on taking the feeder as a pure 

distribution system, minimizing power loss and 

improving voltage profiles. 

Electric Vehicles (EV) Specifications and Modeling 

 Electric vehicles (EV) charging and 

discharging rates. The charging and discharging rates, 

integral to this study, were adopted from Khan et al. 

(2021) and are expressed in Equations 1 and 3. These 

mathematical models can be further elaborated 

expressed as Equations 2 and 4 to determine both the 

charging and discharging rates and the state-of-charge 

(SOC) trend per 15-minute interval, respectively. 

 

 

 𝑃𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔(𝑡) = [𝑉𝑖(𝑡) − 1] ∗ 𝐶ℎ𝑟𝑟𝑎𝑡𝑒  (1) 

 𝑆𝑂𝐶𝑛𝑒𝑤 = 𝑆𝑂𝐶𝑜𝑙𝑑 +
[𝑉𝑖(𝑡)−1]∗𝐶ℎ𝑟𝑟𝑎𝑡𝑒

(𝑇𝐸𝑉)(𝐵𝑐𝑎𝑝)
∗ ∆𝑡 (2)     

 

 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔(𝑡) = [1 − 𝑉𝑖(𝑡)] ∗  𝐷𝑖𝑠𝑐ℎ𝑟𝑟𝑎𝑡𝑒 (3) 

 𝑆𝑂𝐶𝑛𝑒𝑤 = 𝑆𝑂𝐶𝑜𝑙𝑑 −
[1−𝑉𝑖(𝑡)]∗𝐷𝑖𝑠𝑐ℎ𝑟𝑟𝑎𝑡𝑒

(𝑇𝐸𝑉)(𝐵𝑐𝑎𝑝)
∗ ∆𝑡 (4) 

where: 

 Pcharging is the charging wattage (kW) 

 Pdischarging is the discharging wattage (kW) 

 Vi  is the specific voltage at bus i (kV) 

 Chrrate is the charging rate (A) 

 Dischrrate is the discharging rate (A) 

 Bcap is the EV battery capacity (kWh) 

 SOCnew is the updated state-of-charge 

 SOCold is the previous state-of-charge  

 ∆t is the change in time (hr) 

 TEV is the total number of EVs 

 Euseable is the useable battery capacity (kWh) 

 ∆SOCcharging is the SOC difference for charging 

 ∆SOCdisharging is the SOC difference for discharging 

 

 

State-of-charge (SOC) based EV charging 

and discharging load modeling. The equation used 

to identify SOC-based coordinated instantaneous 

charging and discharging powers, which was lifted 

from Akil et al. (2022), is employed in this study. This 

relationship was formulated from the real-time 

charging profiles of EVs, as shown in Equation 5. 

As per the piecewise model dictates, SOC-

based instantaneous charging and discharging power 

reach their maximum when SOC is less than 73%. 

When SOC is at least 73% but less than 93%, there is 

a gradual decline in the maximum charging and 

discharging power. Finally, once SOC reaches 93% 

and above, the power remains constant. 

 

 

 𝑃𝑖
𝑛(𝑆𝑂𝐶) = {

𝑃𝑖
𝑐 = 𝑃𝑚𝑎𝑥                                       𝑖𝑓 𝑆𝑂𝐶 < 73%               

𝑃𝑖
𝑐 = 𝑃𝑚𝑎𝑥 ∙ 3.17 ∙ −ln(𝑆𝑂𝐶)   𝑖𝑓 73% ≤ 𝑆𝑂𝐶 < 93%

𝑃𝑖
𝑐 = 0                                           𝑖𝑓 𝑆𝑂𝐶 ≥ 93%               

 (5) 

where: 

 Pi
n (SOC) is the SOC-based instantaneous charging/discharging power (kW)  

 Pi
c  is the maximum instantaneous charging/discharging power (kW) 

 Pmax is the maximum charging power (kW) 

 SOC is the state of charge 
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Electric vehicle (EV) load growth and 

penetration model. The penetration level is used in 

power engineering to anticipate the future possible 

impacts and real-case scenarios for power distribution 

networks. For instance, the Grid Integration Tech 

Team (GITT) and the Integrated Systems Analysis 

Tech Team (ISATT) of the United States have 

developed a real-life diagram that proposes low, 

medium, and high penetration scenarios from 2010 to 

2050 (GITT and ISATT 2019) as shown in Figure 2.  

 

 
 

Figure 2. Electric vehicles market penetration scenarios 

(GITT and ISATT 2019). 
 

In examining the differences in the optimal 

placement between two possible types of EVCS 

installations, the unidirectional charging and 

bidirectional charging stations serve as the two main 

test cases in this study. These are examined through 

subtest cases according to EV penetration forecast and 

its corresponding optimal sites: 23% in 2030, 62% in 

2040, and 94% in 2050 (GITT and ISATT 2019). The 

three subtest cases have corresponding optimal site 

parameters of 11, 30, and 25, respectively (Zambrano-

Perilla 2016). The base, observed in 2015, serves as a 

reference point when no EV penetration rate recorded 

(GITT and ISATT 2019). 

 

Genetic Algorithm Implementation 

Genetic algorithm (GA) is an iterative 

method inspired by the Darwinian theory of the 

survival of the fittest (Kathoch et al. 2021). It is a 

common optimization method used in investigating 

the behavior of the power system. It starts with the 

random generation of n chromosomes in a population. 

After the initialization, the fitness function is 

computed for each chromosome in the population, 

followed by ranking for the whole generation. Next, 

offspring are produced by selecting parents from the 

existing population using the single-point crossover. 

The resulting offspring will undergo mutation to 

produce new offspring. This cycle continues until the 

desired number of generations is achieved (Liu 2013). 

Using MATLAB R2022b, the 

implementation of the GA in the study involving 

EVCS integration to the distribution network is shown 

in Figure 3. Various penetration levels at different 

periods were introduced, with 100 population and 100 

generations as GA parameters. Single-point crossover 

and a 0.05 mutation rate were utilized to optimize the 

location of EVCS. 
The integration of EVs and EVCS into the 

distribution network results in an increase in average 

real and reactive power losses (Khalkali et al. 2015). 

The parameters were analyzed using OpenDSS as a 

power flow tool. 

In the first subcase, UCT considers only the 

charging process, while the second subcase, BCT, 

considers both charging and discharging setup. 

Moreover, half of the BCT participated in two-way 

charging, and the other half only utilized one-way 

charging (Mehrabi et al. 2020). Simulation time varies 

based on the number of EVCS to be located and the 

consideration of charging/discharging setups. Overall, 

more than a day of simulation runtime was spent for 

six subcases. The simulations were conducted on a 

computer with an i5-8500 CPU Processor @ 3.00 GHz, 

8.00 GB installed RAM and a 64-bit operating system. 

 

Objective Function 

This paper primarily focused on the grid 

performance with the integration of EVCS into the 

network, in particular, to minimize the additional 

losses in the distribution network with the increase in 

EV penetration. Mathematically, the objective 

function is expressed in Equation 6: 

 

 𝐹 = min ∑(𝑆𝑙𝑜𝑠𝑠,𝐸𝑉𝐶𝑆 − 𝑆𝑙𝑜𝑠𝑠,𝑏𝑎𝑠𝑒) (6) 

where: 

F is the minimum additional losses (kVA) 

Sloss, EVCS is the total system apparent losses with EV integration (kVA) 

Sloss, base is the total system apparent losses without EV integration (kVA) 

 

 

For the different cases, the voltage profile, 

system losses, and optimal sites were compared before 

and after the addition of EVCS. Moreover, the VPII, 

PLRI, QLRI, and SLRI were utilized to differentiate 

unidirectional and bidirectional charging. 

Constraints 

 Maximum EVCS of each bus. It is highly 

recommended to have at least one charging station at 

each optimally selected bus to ensure the proper 

operation of the power  distribution  network.  In  this
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Figure 3. The process of integrating electric vehicle charging station (EVCS) unidirectional and bidirectional charging 

technologies into the distribution network. 
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scenario, the algorithm will accommodate a possible 

transportation route area without sacrificing the 

objective function (Fredriksson et al. 2019). However, 

for the purpose of this paper, particular buses suitable 

for station placements were limited to one to ensure 

that the EVCS infrastructure planning does not 

negatively affect the power grid.  

 Maximum capacity of EVCS. Each 

charging station within the specific area has limited 

charging ports. This limitation is attrivuted either to 

the connection’s point inaability to serve a large load 

or lack of budget. According to US DOE EERE (2023), 

the public EVCS at the Sacramento Parking Garage, 

located at #939, 10th Street, Sacramento, California, 

has a total electric vehicle supply equipment of 27 

charging ports by which the same number of EVs can 

charge at the same time. Taking a real-life scenario, 

the assumed maximum charging capacity of a standard 

charging station is 27 EVs. However, due to the vast 

penetration of EVs in the last subcase, 50 charging 

ports per EVCS was assumed instead, which were 

used as the capacity in other studies (Kunj and Pal 

2020). Equation 7 shows the allowable number of 

charging ports in each EVCS located at bus i: 
 

𝐶𝑆(𝑖) ≤ 𝐶𝑆𝑚𝑎𝑥;  ∑ = 𝑁𝑐ℎ,𝑚𝑎𝑥
𝑁𝐶𝑆
𝑖=1                              (7)   

 

where: 

CS (i) is the charging station capacity at bus i 

CSmax is the maximum charging station capacity 

NCS  is the number of charging ports 

Nch, max is the maximum number of charging ports 

 

Permissible state of charging and 

discharging. EV usage, mainly when it is to be 

charged, depends on the owner’s decision. This study 

used the SOC range of 10% to 90% for charging, 

which is typical for an EV battery (Khalkali et al. 

2015). Meanwhile, a range of 20% to 80% is used for 

discharging purposes due to the anticipation that EV 

owners will aim to maximize the sale of unused EV 

battery charge during peak electricity prices (Su et al. 

2019). Thus, the limitation of the charging or 

discharging process as expressed in Equation 8 should 

be: 
 

 {

𝑆𝑂𝐶𝑛 ≤ 𝑆𝑂𝐶𝑛,𝑚𝑖𝑛  ; 𝑓𝑜𝑟 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑜𝑛𝑙𝑦

𝑆𝑂𝐶𝑛,𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑛 ≤ 𝑆𝑂𝐶𝑛,𝑚𝑎𝑥 ;  𝑓𝑜𝑟 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔/𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

𝑆𝑂𝐶𝑛 ≥ 𝑆𝑂𝐶𝑛,𝑚𝑎𝑥 ; 𝑓𝑜𝑟 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑜𝑛𝑙𝑦
 (8)     

 

where: 

SOCn is the chosen state-of-charge (%) 

SOCn, max is the maximum state-of-charge (%) 

SOCn, min is the minimum state-of-charge (%) 

 

 Bus voltage tolerance. Bus voltage can vary 

provided that it does not exceed the range of allowable 

voltage values and does not have an adverse effect on 

the distribution network operation. To maintain the 

voltage range, it must be restricted between 0.9 and 1.1 

per unit, as shown in Equation 9: 
 

 0.9 𝑝. 𝑢. ≤ 𝑉𝑖 ≤ 1.1 𝑝. 𝑢. (9)     
 

where: 

Vi is the voltage at bus i (p.u.) 

 

Evaluation Indices 

 Voltage profile improvement index (VPII). 

One of the significant parameters that must be 

observed in the distribution network is its voltage 

deviation. The indicator assesses the nodal voltages 

concerning reference nodes and must be within 

acceptable limits. In evaluating the given cases, the 

voltage profile and system losses of different 

penetration scenarios were compared to the base case. 

Then, the optimal sites were compared after adding 

EVCS for charging and charging-discharging 

scenarios. The mathematical equations are shown in 

Equations 10 to 11: 

 

 𝑇𝑉𝐷𝑥 =
1

𝑛
∑ (𝑉𝑖 − 𝑉𝑟𝑒𝑓

𝑖 )𝑛
𝑖=1  (10) 

 

 𝑉𝑃𝐼𝐼 =
𝑇𝑉𝐷𝐴+𝑇𝑉𝐷𝐵+𝑇𝑉𝐷𝐶

3
 (11)     

where: 

TVDx is the total voltage deviation of the system per unit at phase x 

Vi is the bus voltage at the bus i per unit 

Vi
ref is the reference bus voltage  

n is the total number of buses 

VPII is the voltage profile improvement index 
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System power loss reduction indices. The 

system losses and their respective reduction indices 

were used to compare the two charging technologies 

and their corresponding optimal sites. The 

mathematical equations of the indices are given in 

Equations 12 to 14: 

 

 

 𝑃𝐿𝑅𝐼 =
𝑃𝑤𝑖𝑡ℎ𝑈𝐶𝑇−𝑃𝑤𝑖𝑡ℎ𝐵𝐶𝑇

𝑃𝑤𝑖𝑡ℎ 𝑈𝐶𝑇
𝑥 100 (12) 

where: 

PLRI is the real power loss reduction index due to EV integration (%) 

PwithUCT is the real power losses with EVCS UCT (kW) 

PwithBCT is the real power losses with EVCS BCT (kW) 

 

 

 The second evaluation indicator in Equation 

12 assesses whether the EVCS charging technology 

enhances or minimizes power losses. In particular, it 

also indicates the loss reduction trend due to the 

bidirectional participation of the EVCS in the grid 

relative to the unidirectional charging process. 

 

 𝑄𝐿𝑅𝐼 =
𝑄𝑤𝑖𝑡ℎ𝑈𝐶𝑇−𝑄𝑤𝑖𝑡ℎ𝐵𝐶𝑇

𝑄𝑤𝑖𝑡ℎ𝑈𝐶𝑇
𝑥 100 (13)     

where: 

QLRI is the reactive power loss reduction index due to EV integration (%) 

QwithUCT is the reactive power losses with EVCS UCT (kVAR) 

QwithBCT is the reactive power losses with EVCS BCT (kVAR) 

 

 

 

 One of the indicators of a stable grid is when 

the reactive power losses do not exceed a threshold 

value (Chen et al. 2021). The QLRI in Equation 13 

aims to determine if reactive power loss is within the 

definite threshold value to maintain the power grid 

stability. Thus, the QLRI has been included in the 

study. 

Shown in Equation 14 is the SLRI, which is 

one of the important parameters to assess whether the 

distribution network has improved. When it goes 

beyond the threshold value, the distribution network is 

unstable. 

 

 

 𝑆𝐿𝑅𝐼 =
𝑆𝑤𝑖𝑡ℎ𝑈𝐶𝑇−𝑆𝑤𝑖𝑡ℎ𝐵𝐶𝑇

𝑆𝑤𝑖𝑡ℎ𝑈𝐶𝑇
𝑥 100 (14)     

where: 

SLRI is the apparent power loss reduction index due to EV integration (%) 

SwithUCT is the apparent power losses with EVCS UCT (kVA) 

SwithBCT is the apparent power losses with EVCS BCT (kVA) 

 

 

RESULTS 

 

Total Integration of EVs and EVCS Considering 

Increasing Penetration Levels 

 The graph in Figure 4 illustrates the power 

losses at each penetration stage for their respective 

technologies. The anticipated apparent power loss of 

EV integration in the year 2050 is extremely high at 

465.2930 kVA for both charging technologies, as its 

penetration level is expected to reach 94%. Meanwhile, 

the year 2040 in the graph has a relatively lower 

penetration than the year 2050 at 62%, which gives 

apparent power losses of 364.5683 kVA for both 

unidirectional and bidirectional modes. In the year 

2030 EV integration, forecasted losses are at 96.3131 

kVA for unidirectional charging and 92.0304 kVA for 

bidirectional charging, given a 23% penetration rate. 

All these values are relatively higher than the base 

power loss of 82.5268 kVA in the year 2015 when 

there was no EV integration.  

 In Figures 5 and 6, the plots of UCT and BCT 

per-unit bus voltage for phase A of the system depict 

a gradual decrease in bus voltages with increasing EV 

penetration levels, regardless of the charging 

technology. On the other hand, in terms of VPII, as 

shown in Table 1, there is an increase in the indices 

concerning the considered years. Moreover, in the 

years 2040 and 2050, similar results were observed for 

both unidirectional and bidirectional charging. 

Meanwhile, the UCT in the year 2030 has a higher 

VPII than the BCT. 
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Figure 4. The graph of power losses vs. EV penetration levels. UCT- unidirectional charging technology; BCT- 

bidirectional charging technology. 
 

 
 

Figure 5. The per-unit bus voltage profile in different test case scenarios in unidirectional charging technology setup for phase 

A. 

 
 

Figure 6. The per-unit bus voltage profile in different test case scenarios in bidirectional charging technology setup for phase 

A. 

 

Table 1. The voltage profile improvement index (VPII) between undirectional charging technology (UCT) and bidirectional 

charging technology (BCT) for different penetration levels. 
 

Year 
Subcase  

(penetration level) 

VPII (p.u.) 

UCT BCT 

2015 0% 1.1139 

2030 23% 1.2020 1.1249 

2040 62% 1.6260 1.6259 

2050 94% 1.7094 1.7094 
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Electric Vehicle Charging Station (EVCS) 

Optimal siting 

 Optimal placement assesses the possible site 

combinations to attain the objective function. To 

facilitate a comparison of optimal locations for each 

subcase based on the penetration level, Table 2 

presents a summary of the optimization results. The 

same buses were identified in the subcases of both 

power charging technology for every penetration level. 

Lastly, Figure 7 illustrates that the resulting optimal 

sites are concentrated in specific locations. 

 

Table 2. Optimal electric vehicle charging station sites at different penetration levels. 

 

Main Cases 
Subcase  

(penetration level) 
Year Optimal Sites 

Unidirectional 
23% 2030 

2, 3, 4, 5, 13, 14, 15, 22, 23, 30 

Bidirectional 2, 3, 4, 5, 13, 14, 15, 22, 23, 30 

Unidirectional 

62% 2040 

2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19,  

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 

Bidirectional 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19,  

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 

Unidirectional 

94% 2050 

2, 3, 4, 5, 6, 7, 8, 13, 14, 15, 16, 17, 18, 

 19, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32 

Bidirectional 2, 3, 4, 5, 6, 7, 8, 13, 14, 15, 16, 17, 18, 

 19, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32 

 

 

 
 (a) (b) (c) 

Figure 7. The electric vehicle charging stations (EVCS) installation at (a) 23%, (b) 62%, and (c) 94% EV penetration rates. 

 

Comparison of Index Values Between Charging 

Technologies  

 The VPII of all buses connected to phase A 

in the test system was calculated with the year 2015 as 

the reference. Figure 8 reveals that there is almost no 

difference in VPII for the bidirectional case of the year 

2030 compared to the base case. On the other hand, a 

slight distortion is apparent in the graph of 

unidirectional charging. 

Using the results of unidirectional charging 

as reference values for the bidirectional case, system 

power losses were analyzed to compare the 

characteristics of the charging technologies. Table 3 

shows that only the year 2030 has non-zero index 

values. 
 

Table 3. Real, reactive, and apparent power loss reduction indices. PLRI - real power loss reduction index;  QLRI- reactive 

power loss reduction index; SLRI-apparent power loss reduction index. 

 

Subcase 

(penetration level) 
Year 

Evaluation Indicators of Comparison 

PLRI QLRI SLRI 

23% 2030 4.142878856 4.916659909 4.44664329 

62% 2040 0 0 0 

94% 2050 0 0 0 

 



Balmeo et al.: Comparative analysis of electric vehicle charging stations 

 
The Palawan Scientist, 15(2): 31-40 

© 2023, Western Philippines University  

51 

 
 

Figure 8. Phase A voltage profile improvement index (VPII) of the entire network. UCT- undirectional charging technology; 

BCT- bidirectional charging technology 

 

DISCUSSION 

 

Total Integration of EVs and EVCS Considering 

Increasing Penetration Levels 

 As observed in the graph presented in Figure 

4, there exists a direct relationship between the 

penetration of EVs and the apparent power loss. 

Higher integration of EVs results in a higher apparent 

power loss, regardless of the charging technology 

employed in the system. The anticipated transition 

from ICE vehicles to EVs is expected to contribute to 

higher apparent losses in the power grid. Variations in 

the penetration level have caused changes in the power 

loss, the number of optimal sites, and the capacity of 

the EVCS. It can be concluded that there is a 

significant increase in real, reactive, and apparent 

power losses. Thus, the higher anticipation of EV 

loads due to the increasing penetration level through 

time is expected to be caused by the advancements in 

the transportation sector. Without proper intervention, 

additional EV loads could alter the normal grid 

operations. 

On the other hand, the varying penetration 

levels in this study assessed the impacts of the EV 

integration. The dramatic increase in penetration rate 

has a negative effect on the voltage profile of the 

power grid. As the injected EV load increases, the bus 

voltages deviate from the ideal value. With the 

expected technological advancement in EVs, there is 

an anticipated voltage profile deterioration by as much 

as 1.7094 p.u. Based on the trend analysis of Table 1 

values, the voltage profile is deteriorating in the 

subsequent years. 

 

Electric Vehicle Charging Station (EVCS) optimal 

siting 

Overall, there is a commonality among the 

respective penetration levels where the resulting 

optimal sites in the test system cluster in the nodes near 

the supply bus. Indeed, these results are consistent 

with recent works. One of these studies has presented 

that connecting an EVCS at any bus in the distribution 

network increases the active power loss due to the 

resistance of the branches from the slack bus to the 

considered node (Bilal et al. 2021). Thus, to reduce the 

resulting power loss, the EVCS should be located 

closer to the upstream network near the supply 

(Hadian et al. 2020). 

The observation shows similar results when 

the number of optimal sites increases in the 

distribution network. Another factor contributing to 

this trend is the bidirectional participation of EV 

owners. According to Mehrabi et al. (2020), the 

willingness of the drivers to participate in the 

bidirectional charging is 50%. This means the ratio of 

charging and discharging in the bidirectional 

technology is 2:1, indicating that for every two 

charging vehicles, only one can discharge. With this, 

the research suggests that all EVs still need to be 

charged before this half undergoes discharging energy 

into the power system. Hence, UCT and BCT had the 

same optimal sites since they usually acted as a load. 

 

Comparison of Index Values Between Charging 

Technologies  

 After identifying the optimal sites where 

minimum power losses are observed, there is a 

noticeable difference between the two power charging 

directions. During the years with low penetration, 

there is less power loss in UCT than in BCT. However, 

during higher EV penetration beyond the year 2040, 

the distribution network experiences more apparent 

power losses, considering that BCT has become the 

norm in society. Correspondingly, power losses 

increase as the EV penetration rate increases from the 

base case year 2015 when there is no EV integration.  

The BCT in the year 2030 exhibits a more 

improved power loss relative to the UCT of the same 

year since it deviates mainly from the base case. On 

the other hand, the EV load integrated into the system 
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contributes to the fluctuations in the UCT in 2030, as 

observed in Figure 8. Meanwhile, power losses in both 

charging technologies are the same for the years 2040 

and 2050, where EV penetration is higher than in the 

former cases. The discharging scenario in BCT 

positively affects the distribution network by 

providing additional power to the system. 

Nevertheless, due to the high EV loads, both the UCT 

and BCT negatively affect the grid, which resulted in 

high VPII values. 

Table 3 presents the system loss indices for 

the BCT subcases relative to their corresponding UCT 

counterparts. For 2030, the power loss index values of 

4.14%, 4.92%, and 4.45% are determined for PLRI, 

QLRI, and SLRI, respectively. Since there is a positive 

value in PLRI at 4.14%, there is a minimization and 

loss reduction trend this year brought by utilizing BCT 

over the UCT case. Moreover, the 4.92% QLRI 

implies a more stable power grid from BCT 

application in the said year. Lastly, the 4.45% SLRI 

shows an overall improvement in the system due to the 

reduction in apparent power losses from using 

bidirectional charging. 

Meanwhile, the three evaluation indices have 

zero values at higher penetration rates of 62% and 94%. 

These results signify that the system losses from using 

BCT and UCT are the same, and there is no advantage 

in using the former over the latter. 

The results suggest that bidirectional 

charging can provide opportunities to improve the 

distribution system if more EV owners utilize it. A 50% 

EV bidirectional participation is insufficient to make 

the distribution system better since the result shows no 

difference compared to unidirectional charging at high 

EV penetration. Hence, further studies can examine 

the possibility of incentivizing participation in 

bidirectional charging through tariffs and tax credits. 

The distribution system operator can do proper grid 

interventions, such as replacing the lines with lower 

resistance and utilizing power loss compensator 

equipment in anticipation of higher EV loads in the 

future. Moreover, another path of future research on 

differentiating the two charging technologies is 

studying the cost-effectiveness, battery efficiency and 

deterioration, and grid communication, particularly 

with traffic demand management of the mixed flow of 

two charging technologies.  
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