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ABSTRACT 

 
Monitoring temperature-dependent events is critical for understanding their dynamics since 

these events have an impact on both animal and human habitation.  It is common to see analysis of heat 

index and sea level that are described separately although these events have a direct connection to 

temperature. Often these analyses are less effective and less reliable in describing its dynamics vis-à-vis 

redundancy, flexibility, accounting of uncertainties and optimization. Since both are temperature-

dependent events, a unified stochastic model with memory was derived. These events can be effectively 

described with a collective memory function (𝑇 − 𝑡)
𝜇−1

2 𝑒−
𝛽

2𝑡 𝑡
𝜇+1

2 , modifying the Brownian motion.  A 

good match between the empirical and theoretical MSDs for both heat index and sea level was obtained 

with memory parameters 𝜇𝐻𝐼 = 1.0460  and 𝜇𝑆𝐿 = 1.0894 , respectively.  With μ > 1, heat index and 

sea level exhibited long-term memory characteristics which have important implications for large 

timescale prediction. Similarly, analyses using a unified model are simplified and may provide the 

interrelatedness of these events. 
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INTRODUCTION 

 

  

The unprecedented rise in global temperature 

at a rate of 0.2 degrees/decade over the past thirty 

years (Hansen et al. 2006) had significantly affected 

and disrupted both human activities and animal 

habitation.  Among the many issues of elevated 

temperature, the most pressing is the health-related 

heat stresses (Dang et al. 2019) including effect on 

respiratory systems and the weakening of body to 

maintain temperature balance (Ma et al. 2019; 

McGregor and Vanos 2018).  The elevated island 
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heating, as measured by the heat index (HI), has the 

greatest impact on human productivity (Wang et al. 

2022; Dean and Claassen 2023), while animal 

habitation decreases as sea level (SL) rises (Paul and 

Paul 2022; Dixon et al. 2023).  In many ways, these 

observed effects are commonly related to temperature 

rise.  Note that changes in SL is related to rising 

temperature causing ice melts in both northern and 

southern hemisphere (Hagen and Azevedo 2022; Orr 

et al. 2022; Coupe et al. 2023; Park et al. 2023; Purich 

and England 2023).  It is but important to constantly 

monitor the state of these climactic factors especially 

in areas that are highly vulnerable to these changes 

particularly at their extreme state (Balacco et al. 2023; 

Zagebelnaya 2022). 

  Since HI and SL are both temperature-

dependent events, they may exhibit a similar 

dynamical model. Because of this, a separate treatment 

may provide inconsistencies (Meehl et al. 2000; Pielke 

et al. 2002; Li et al. 2010) and non-conformities of the 

models resulting to less reliable assessments of current 

extreme events (Eggleston et al. 2006; Long et al. 

2006; Field et al. 2012; Stott et al. 2016).  In fact, HI 

and SL model unification stems from the fact that both 

phenomena evolve in time can be linked to the same 

physical processes that may have operated in multiple 

spatial and temporal scales (Brown et al. 2012).  The 

vantage point is the ability of a unified model for a 

seamless prediction for these systems (Bhaskaran et al. 

2002).  For example, the novel Met Office Unified 

Model for climate change and weather prediction had 

proven to address model issues on redundancy, 

flexibility and often outperforms stand-alone models 

(Brooke et al. 2019; Maher and Earnshaw 2022).  On 

the other hand, it had been shown in Elnar et al. (2021) 

that interrelated dynamics can have unifying models 

highlighting similar memory functions with varying 

degrees. With the interrelatedness between HI and SL, 

the researchers are driven to demonstrate that these 

events do, in fact, follow a similar dynamical memory 

parameter. By employing the analytical stochastic 

framework with memory (Bernido and Carpio-

Bernido 2012, 2014), a direct comparison of the 

analytical and empirical mean square deviations 

(MSD) is provided and we obtain the explicit 

probability distribution function (PDF).  In this way, a 

unified treatment can provide a holistic perspective in 

the interrelatedness of temperature-dependency of 

these biophysical events. 

 

METHODS 

 

Stochastic Framework with Memory 

The non-Markovian structure of fluctuations of 

temperature-dependent phenomena such as heat index 

(HI) and sea level (SL) was modeled using the Hida 

stochastic functional integral method (Hida 1996). 

This method enables the researchers us to analyze the 

PDF and moments analytically. The parametrization 

of the path of a random variable x was defined as a 

sum of the initial point and fluctuation (Equation 1; 

Bernido and Carpio-Bernido 2012, 2014), where B(t) 

is the ordinary Brownian motion, 𝑓(𝑇 − 𝑡)ℎ(𝑡) =

 (𝑇 − 𝑡)
𝜇−1

2 𝑒−
𝛽

2𝑡 𝑡
𝜇+1

2  is a memory function, and g(T) 

is a modulating factor in F(T) .  To pin down a 

particular trajectory of interest, the delta function 

constraint was applied, δ(x(T) -  xT) and the 

probability distribution function (PDF) was obtained 

for the given endpoint xT by taking the expectation 

value of the delta function.  The corresponding PDF is 

given by Equation 2 and α2=   (𝑔(𝑇))
2

(∫ [(𝑇 −
𝑇

0

𝑡)
𝜇−1

2 𝑒−
𝛽

2𝑡 𝑡
𝜇+1

2 ]
2

𝑑𝑡)

−1

.  From the PDF, we can obtain 

the mean square displacement (MSD) as given by 

Equation 3. Notice that if f(T  -  t) = √2D , 

h(t) = g(T) = 1, the PDF and MSD correspond to the 

ordinary Brownian motion.  The analyses used in this 

research were applied to temperature-related 

occurrences, with a focus on sea level (SL) and heat 

index (HI). Datasets of these two events are readily 

available and can be accessed freely through NOAA 

and NWS websites as described in the next section.  

 

  

𝑥(𝑇) = 𝑥0 + 𝐹(𝑇) = 𝑥0 +  𝑔(𝑇) ∫ (𝑇 − 𝑡)
𝜇−1

2 𝑒−
𝛽

2𝑡 𝑡
𝜇+1

2 𝑑𝐵(𝑡)   
𝑇

0
       

 

(Eq.1) 

 

 

P(xT,T; x0,0) = (  
2π

α2
 )

-
1
2

exp (-α2
(x

0
 - xT)

2
 

2
) (Eq.2) 

 

 
MSD = g(T)

2 ∫ [f(T  -  t)h(t)]
2
dt

T

0

. (Eq.3) 
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Heat Index Dataset 

 Heat index data were gathered from the 

National Oceanic and Atmospheric Administration 

(NOAA) data site in 2018 from 1966 to 2017, totaling 

17,588 daily HI data points.  In this case, HI datasets 

obtained were for Mactan Island, Cebu.  These HIs 

reflected the US National Weather Services (NWS) 

algorithm (Anderson et al. 2013) which provided 

consistency to environmental results and agreed 

among the many algorithms to Steadman’s apparent 

temperature (Anderson et al. 2013; Ramirez-Beltran et 

al. 2017).  With a huge amount of data points, 

Leskovec and Faloutsos (2006) suggested that a 

subgraph can be surveyed of which 25% of the data 

points may observe a similar behavior as that of the 

original graph.  Thus, the corresponding subgraphs 

were plotted and compared to whether they exhibited 

the same behavior.  Only then the representative 25% 

of the total data points were used in the model.  A 

linear interpolation approach was used in filling the 

missing data points as it was done in Bucheli et al. 

(2022).  The heat index fluctuation for Mactan Island 

is presented in Figure 1. 

 

 
Figure 1. Daily fluctuarions of heat index in Mactan Island 

from 1966 to 2017.  

 

Sea Level Datasets 

 The SL data was obtained from the database 

of the University of Hawaii Sea level center for the 

Philippines, particularly the Manila Sea level data 

points. The period covered in the dataset is from 1984 

to 2015. For consistency, a 25% representative of the 

total data points were used in the model.  Similarly, 

missing data points were filled in using linear 

interpolation (He et al. 2022; Zheng et al. 2022).  The 

fluctuations of SL for Manila are presented in Figure 

2, depicting the original data that comprises both 

deterministic and stochastic components. In order to 

isolate the purely stochastic part of the data, 

detrending techniques were applied, and the resulting 

plot is presented in Figure 3. 

 

 
Figure 2. Daily sea level (cm) for Manila, Philippines 

(1984−2015).  

 

 
 

Figure 3. Detrended raw data plot showing long-term 

fluctuarions in sea level over time. 

 

Mean Square Displacement (MSD) Plots 

 MATLAB R2018b was used in obtaining the 

corresponding plots of HI and SL and the plots of their 

MSD’s.  The MSD plots were fitted against the 

theoretical MSD.  This theoretical MSD was chosen 

appropriately to give a good fit to the empirical MSD. 

Lastly, the corresponding parameters were obtained 

from this comparison. 

 

 

RESULTS 

 

Stochastic Framework for HI and SL 

 The different theoretical MSD’s describing 

stochastic framework with memory was surveyed.  

The theoretical MSD is exponentially modified for 

both events and is given by: 

 

 
MSD = g(T) (  

Γ(μ) t(μ - 1)e-β/t

β
μ )  (Eq.4) 
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where g(T) = exp [(b - 
t

ϵ
) sin(ct - k)]  serves as the 

modulating function where b , ϵ, c  and k  are just 

constants. This is an extended form as used in Bernido 

et al. (2014). This theoretical MSD corresponded to 

the memory function given by 

f(T - t) = (T - t)
 μ - 1

2 , h(t) = 
e-β/2t

t(μ + 1)/2.   Then, this 

stochastic model was applied and insights into the 

dynamics of the heat index and sea level were gained. 

 

Empirical and Theoretical MSDs for HI and SL 

Using the theoretical MSD above, the 

corresponding log-log plots for the empirical data 

alongside a theoretical fit of the HI datasets are 

presented in Figure 4. The corresponding coefficient 

of determination (𝑅2 = 0.7309) between the two is 

also provided to assess the quality of the fit. This 

comparison is essential to determine the accuracy of 

the theoretical model in describing the observed 

phenomenon. Moreover, as shown, the dynamical 

parameters derived from the fit corresponds to 

μ = 1.0460 and β = 0.0792 with scaling constants of 

the modulating function obtained as b = 0.1377 , 

c = 0.063, ϵ = 9999, and k = 0.9.  Furthermore, the 

theoretical MSD with values of tc = 3.7 (x-axis) were 

normalized.  The normalization shifts the graph along 

x-axis. 

The corresponding log-log plot of both the 

empirical and theoretical MSDs for sea level is 

presented in Figure 5 below. The corresponding 

coefficient of goodness of fit to be 𝑅2 = 0.9312 was 

determined. From the fit, the parameters associated 

with the dynamics of the event were μ = 1.0894  and 

β = 1.4562. The scaling constants of the modulating 

function were obtained as b = 0.9129 , c = 2.6569 , 

ϵ = 600, and k = 0.8.  Normalization of the x-axis had 

value of tc =  100.5 which shifts the graph sideways in 

order for the two plots to match.  

Henceforth, using Equation 4, the explicit 

form of the Probability Distribution Function of 

Equation 2 is expressed in Equation 5: 

 

 

 

 
Figure 4. Log-log plots of empirical (blue) and theoretical (red) mean square displacement (MSDs) for heat index. 

 

 

 
 

Figure 5. Log-log plots of empirical (blue) and theoretical (red) mean square displacement (MSDs) for sea level (SL). 
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P(xT,T;x0, ) =√
β

μ

2π exp [(b - 
T
ϵ

)] sin(cT - k)Γ(μ)Tμ - 1e
-
β
T

   

                                            × exp [-
(xT-x0)2

2 exp [(b - 
T
ϵ

)] sin(cT - k)Γ(μ)Tμ - 1e-β/T

] 
             

(Eq.5) 

 

 

DISCUSSION  

 

Stochastic Framework for HI and SL 

The same stochastic framework for both HI 

and SL clearly demonstrated that they are, in fact, 

generally related phenomena.  In context, this 

framework established a dynamical perspective of 

which both events can be described given that they are 

two distinct phenomena.  Although both are driven by 

temperature changes, their dynamical behavior is 

crucial to the impacts because it influences other 

systems with which they interact.  According to World 

Meteorological Organization (WMO 2021), they had 

shown the dynamical effects of heat and sea level on 

extreme weather events including cyclones, drought 

and wildfire.   

It is noted, further, that the HI–SL 

interactions can be presumed as a driven dynamics 

resulting to a collective memory between systems as 

discussed in Elnar et al. (2021), in evo-eco dynamics 

(Power et al. 2015; Fisher and Pruitt 2020), eco-

memory of interacting systems (Baho et al. 2021; 

Khaligli et al. 2021) or climate – carbon cycle 

interaction (Page et al. 2021).  This collective memory 

is encoded in the characteristic parameter, 𝜇 , of 

Equation 4.  This is anticipated to yield the same 

characteristic parameter as in the cases of HI( 𝜇 =
1.0460) and SL (𝜇 = 1.0894).  

 

Empirical and Theoretical MSDs for HI and SL 

It is proven that both heat index and sea-

level events have similar stochastic memory functions, 

as indicated in Equation 4.  With the memory 

parameter μ = 1.0460  HI and μ = 1.0894 SL greater 

than unity suggesting long memory ranges which 

complemented the views of sea level as random 

fluctuations with memory (Peng et al. 1994; Li et al. 

2011; Dangendorf et al. 2014; Ventosa-Santaularia et 

al. 2014; Elnar et al. 2021) and other temperature-

dependent events, such as surface air temperature 

(Caballero et al. 2002; Elnar et al. 2021) and ocean 

circulation (Vyushin and Kushner 2009).  The 

associated parameters in the modulating function g(T) 

can be attributed to factors of the environment referred 

to as “effective ambient temperature” (Dietrich et al. 

2020) both with biotic and abiotic influence.  On the 

other hand, sea level may be modulated by the changes 

in sea density as caused by temperature (thermostatic) 

and/or salinity (allosteric) (Antonov et al. 2002; Munk 

2003; Ishii et al. 2006).  It has poined out; however, 

the influence of these factors cannot be directly 

extracted from our model rather we suspect that these 

environmental parameters have direct implications for 

the modulation of the HI and SL dynamics as asserted 

in Barkhordarian et al. (2012). 

The long memory characteristics of the 

model presented herein have an important implication 

to predicting both HI and SL in larger timescales 

(Rypdal 2015), thus the decadal prediction of 

temperature rise (Hansen et al. 2006) as related to the 

latter can be well described.  Since both HI and SL 

exhibit the same stochastic behavior, analyses can be 

simplified over these events using Equation 4 above 

including their interrelatedness.  Also, analyzing 

interrelated events with a unified stochastic model 

offered more reliable analyses, reducing the degree of 

errors whereby employing only a few scaling factors.  

It is presented in this paper that both HI and SL 

exhibited the same stochastic model with memory, and 

thus can be analyzed singly using Equation 4.  These 

events' long memory ranges (μ > 1) are often good in 

predicting their changes over extended durations.  

Similarly, this unified stochastic model provides more 

reliable analyses reducing the degree of errors as such 

only a few scaling factors can be employed. 
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